Convolution arithmétique

On note $\mathcal F$ l'ensemble des fonctions de $\mathbb N^*$ vers $\mathbb R$. On munit $\mathcal F$ d'une loi additive définie par :

$$\forall u, v \in \mathcal{F}, \forall n \in \mathbb{N}^*, (u+v)(n) = u(n) + v(n).$$

Pour tout $n \in \mathbb{N}^*$, on note :

- D_n l'ensemble des $d \in \mathbb{N}^*$ tels que $d \mid n$.
- C_n l'ensemble des $(d_1, d_2) \in (\mathbb{N}^*)^2$ tels que $d_1 d_2 = n$.

On définit une seconde loi \star sur ${\mathcal F}$ par :

$$\forall u, v \in \mathcal{F}, \forall n \in \mathbb{N}^*, (u \star v)(n) = \sum_{d \in D} u(d)v(n/d)$$
.

Par abus, on pourra aussi noter:

$$(u \star v)(n) = \sum_{d|n} u(d)v(n/d).$$

Partie I : Etude de structure

1. Justifier que pour tout $u, v \in \mathcal{F}$ on a :

$$\forall n \in \mathbb{N}^*, (u \star v)(n) = \sum_{(d_1,d_2) \in C_n} u(d_1)v(d_2).$$

Quelle propriété de la loi * découle de manière immédiate de cette relation.

- 2. Montrer que la loi \star est associative.
- 3. Montrer que la loi \star admet un élément neutre ε que l'on précisera.
- 4. La structure $(\mathcal{F}, +, \star)$ est-elle un anneau?

Partie II: Fonctions multiplicatives

Une fonction u de \mathcal{F} est dite multiplicative si et seulement si :

$$\forall m, n \in \mathbb{N}^*, m \land n = 1 \Rightarrow u(mn) = u(m)u(n)$$
.

Par exemple les fonctions θ et ψ de \mathbb{N}^* vers \mathbb{R} définies par : $\theta(n) = 1$ et $\psi(n) = n$ sont clairement multiplicatives.

- 1. Pour tout $n \in \mathbb{N}^*$, on note $\omega(n)$ le nombre de nombres premiers distincts intervenant dans la décomposition primaire de n. Montrer que l'application $n \mapsto (-1)^{\omega(n)}$ est multiplicative.
- 2. Soit $u \in \mathcal{F}$ une fonction multiplicative et $n \in \mathbb{N}^*$ connu par sa décomposition primaire $n = \prod_{i=1}^N p_i^{\alpha_i}$ (avec p_1, \ldots, p_N nombres premiers deux à deux distincts). Exprimer u(n) en fonction des $u(p_i^{\alpha_i})$.
- 3. Soit $m,n\in\mathbb{N}^*$ tels que $m\wedge n=1$ et $\pi:D_m\times D_n\to D_{mn}$ l'application définie par $\pi(d_1,d_2)=d_1d_2$.
- 3.a Montrer que l'application π est bijective.
- 3.b En déduire que si $u, v \in \mathcal{F}$ sont multiplicatives alors $u \star v$ l'est aussi.
- 4. On pose $\delta = \theta \star \theta$ et $\sigma = \psi \star \theta$.
- 4.a Que représentent les quantités $\delta(n)$ et $\sigma(n)$?
- 4.b Soit $n \in \mathbb{N}^*$ connu par sa décomposition primaire $n = \prod_{i=1}^N p_i^{\alpha_i}$ (avec $p_1, ..., p_N$ nombres premiers deux à deux distincts). Exprimer $\delta(n)$ et $\sigma(n)$

On définit une fonction μ de \mathcal{F} en posant pour tout $n \in \mathbb{N}^*$:

 $\mu(n) = 0$ si n est divisible par le carré d'un nombre premier et $\mu(n) = (-1)^k$ si n s'écrit comme le produit de k nombres premiers deux à deux distincts.

- 1. Montrer que cette fonction μ est multiplicative.
- 2. Soit p un nombre premier. Calculer $(\mu \star \theta)(p)$ et $(\mu \star \theta)(p^{\alpha})$ pour $\alpha \in \mathbb{N}^*$. En déduire que μ est l'inverse de θ pour la loi \star .
- 3. Soit $u, v \in \mathcal{F}$. Etablir l'équivalence :

$$\forall n \in \mathbb{N}^*, v(n) = \sum_{d|n} u(d) \Leftrightarrow \forall n \in \mathbb{N}^*, u(n) = \sum_{d|n} \mu(n/d)v(d).$$

4. En déduire que pour tout $u \in \mathcal{F}$ et tout $n \in \mathbb{N}^*$ la relation :

$$u(n) = \sum_{d|n} \sum_{c|d} \mu(d/c) u(c)$$

Partie IV : Fonction indicatrice d'Euler

Pour tout $x \in \mathbb{Z}$ et $n \in \mathbb{N}^*$, on note $(x)_n$ la classe de x dans $\mathbb{Z}/n\mathbb{Z}$.

1. Dans toute la suite du problème, on pose pour tout $n \in \mathbb{N}^*$,

$$\varphi(n) = \operatorname{Card} \left\{ k \in [1, n] / k \wedge n = 1 \right\}.$$

1.a Rappeler quels sont les éléments inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$.

Combien y en a-t-il?

- 1.b Soit p un nombre premier. Calculer $\varphi(p)$ et $\varphi(p^{\alpha})$ pour $\alpha \in \mathbb{N}^*$.
- 2. Soit $m, n \in \mathbb{N}^*$ tels que $m \wedge n = 1$.
- 2.a Quels sont les éléments inversibles de l'anneau $(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$. Combien y en a-t-il ?
- 2.b Etablir que l'application $f: \mathbb{Z}/mn\mathbb{Z} \to (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$ définie par $f((x)_{mn}) = ((x)_m, (x)_n)$ est un isomorphisme d'anneaux.
- 2.c En déduire que $\varphi(mn) = \varphi(m)\varphi(n)$.
- 3. Soit $n \in \mathbb{N}^*$ et d diviseurs positifs de n.
- 3.a Calculer le cardinal de l'ensemble $\{k \in [1, n] / \operatorname{pgcd}(k, n) = d\}$.
- 3.b En déduire la relation

$$\sum_{d|n} \varphi(d) = n .$$

Partie V : Calcul de quelques déterminants non triviaux

Soit $n \in \mathbb{N}^*$. On souhaite calculer le déterminant de la matrice $A = (a_{i,j}) \in M_n(\mathbb{R})$ définie par $a_{i,j} = \operatorname{pgcd}(i,j)$.

- $\begin{array}{ll} \text{1.} & \text{On pose } L = (\ell_{i,d}) \in M_n(\mathbb{R}) \ \text{ la matrice définie par } \ell_{i,d} = \begin{cases} 1 \ \text{si } d \mid i \\ 0 \ \text{sinon} \end{cases} \\ & \text{et } U = (u_{d,j}) \in M_n(\mathbb{R}) \ \text{ celle définie par } u_{d,j} = \begin{cases} \varphi(d) \ \text{si } d \mid j \\ 0 \ \text{sinon} \end{cases}$
- 1.a Calculer $\det L$ et $\det U$.
- 1.b Etablir que A = LU et donner une expression de det A.

On souhaite maintenant calculer le déterminant de la matrice $B=(u(a_{i,j}))\in M_n(\mathbb{R})$ où u désigne un élément de $\mathcal F$ et $a_{i,j}$ le pgcd de i et j comme ci-dessus.

$$2. \qquad \text{On pose } V = (v_{d,j}) \in M_n(\mathbb{R}) \ \text{ la matrice définie par } \ v_{d,j} = \begin{cases} \sum_{c \mid d} \mu(d/c) u(c) \ \text{si } d \mid j \\ 0 \ \text{sinon} \end{cases}$$

- 2.a Calculer LV.
- 2.b En déduire une expression de $\det B$.
- 3. On note $C=(c_{i,j})\in M_n(\mathbb{R})$ la matrice définie par $c_{i,j}=\operatorname{ppcm}(i,j)$ Donner une expression de $\det C$.