Corrigé de l'épreuve de Mathématiques du Brevet Blanc du 11/12/2015

EXERCICE 1 (6 points) QCM: Pour chaque ligne du tableau, trois réponses sont proposées, mais une seule est exacte.

Indique sur ta copie le numéro de la question et recopie la lettre correspondant à la réponse exacte.

		A	В	С
1,5 pt	1. L'expression développée de $(3x - 5)^2 \operatorname{est} (3x)^2 - 2 \times 3x \times 5 + 5^2 =$	$9x^2 - 15x + 25$	$9x^2 - 25$	$9x^2 - 30x + 25$
1,5 pt	2. L'expression factorisée de $16x^2 - 36 = (4x)^2 - 6^2 \text{ est}$	$(8x-6)^2$	$(4x-6)^2$	(4x+6)(4x-6)
1,5 pt	3. $\sqrt{96} = \sqrt{4 \times 24} =$	$2\sqrt{48}$	9,797958971	$2\sqrt{24}$
1,5 pt	4. $2 \times 10^4 + 2 \times 10^3 = 20 \times 10^3 + 2 \times 10^3 =$	2×10^7	22×10^{3}	4×10^7

[Dans cet exercice on ne demandait pas de justifier]

EXERCICE 2 (4 points)

Voici un programme de calcul:

- Choisir un nombre.
- Soustraire 6.
- Multiplier le résultat par le nombre choisi.
- Ajouter 9.

1) On choisit au départ le nombre 11. Montrer qu'on obtient 64.

$$(11-6) \times 11 + 9 = 55 + 9 = 64$$

Quel est le résultat du programme si on choisit le nombre -4 ?

$$(-4-6) \times (-4) + 9 = -10 \times (-4) + 9 = 49$$

Soit x le nombre choisi au départ. Montrer que le nombre obtenu à la fin est $x^2 - 6x + 9$.

$$(x-6)x+9=x^2-6x+9$$

THEO affirme que le résultat du programme sera toujours un nombre positif.

A-t-il raison?

$$x^2 - 6x + 9 = (x - 3)^2$$

 $(x-3)^2$ est un carré et un carré est toujours positif, donc Théo a raison.

EXERCICE 3 (3 points)

Les plateaux (représentés par [AB] et [CD]) de cette desserte roulante sont-ils parallèles ?

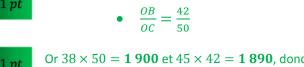
On donne :
$$AO = 38 \ cm$$
 ; $CO = 50 \ cm$; $OD = 45 \ cm$; $OB = 42 \ cm$

Les droites (CB) et (AD) sont sécantes en O et :

•
$$\frac{OA}{OD} = \frac{38}{45}$$

Or
$$38 \times 50 = 1900$$
 et $45 \times 42 = 1890$, donc : $\frac{OA}{OD} \neq \frac{OB}{OC}$.

Ainsi, par contraposée du théorème de Thalès, les plateaux modélisés par [AB] et [CD] ne sont pas parallèles.



EXERCICE 4 (5 points)

ABCD est un carré 4 cm de côté.

On a placé un point M mobile sur [AB] et construit le carré MNPQ,

comme visualisé sur le schéma ci-contre.

1. On appelle x la longueur AM.

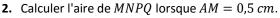
On définit la fonction f donnant l'aire du carré MNPQ en fonction de x.

Montrer
$$f(x) = 2x^2 - 8x + 16$$
.

0,5 pt MNPQ est un carré donc $A_{MNPQ} = MN^2$

D'après le théorème de Pythagore :
$$MN^2 = MB^2 + BN^2 = (4 - x)^2 + x^2 = 4^2 - 2 \times 4 \times x + x^2 + x^2 = 16 - 8x + 2x^2$$
.

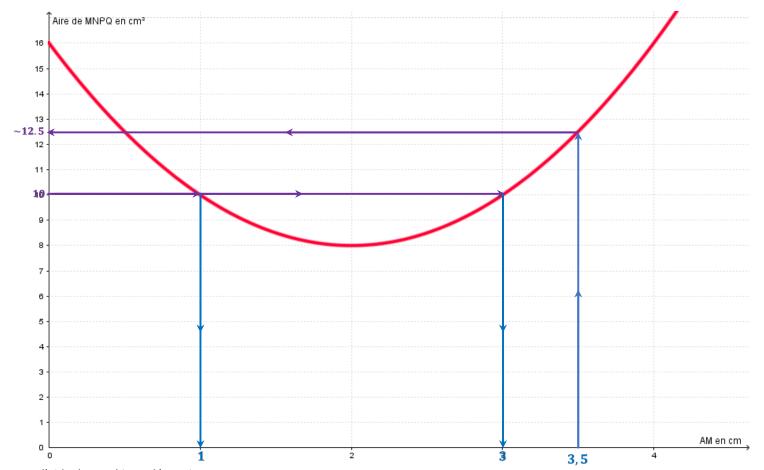
Ainsi :
$$A_{MNPO} = f(x) = 2x^2 - 8x + 16$$
.



Lorsque $AM = 0.5 \, cm$, c'est-à-dire lorsque $x = 0.5 \, cm$, on a $f(0.5) = 2 \times 0.5^2 - 8 \times 0.5 + 16 = 12.5 \, cm^2$.

3. A l'aide d'un logiciel on a représenté l'aire du carré MNPQ en fonction de la longueur AM.

On a obtenu le graphique ci-dessous:



A l'aide du graphique déterminer...

a) I'aire de MNPQ quand AM = 3.5 cm.

D'après la courbe représentative de la fonction f, $f(3,5) \simeq 12,5$.

Donc l'aire de MNPQ pour AM = 3.5 cm vaut environ 12,5 cm^2 .

b) pour quelle(s) valeurs de AM l'aire est égale à $10 \ cm^2$.

D'après la courbe représentative de la fonction f, les antécédents de $\mathbf{10}$ par \mathbf{f} sont $\mathbf{1}$ et $\mathbf{3}$.

Donc l'aire de MNPQ est égale à $10 cm^2$ pour AM = 1 cm ou 3 cm.

1 pt

EXERCICE 5 (6 points)

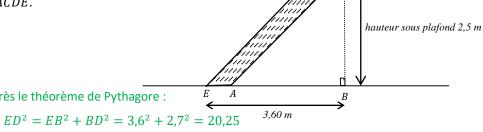
Germaine souhaite réaliser un escalier pour monter au grenier de sa maison.

Elle a besoin de connaître les dimensions du limon (planche qui supporte les marches).

Elle a réalisé le croquis ci-contre:

- Le limon est représenté par le quadrilatère ACDE.
- Les droites (AC) et (DE) sont parallèles.
- Les points B, C, D sont alignés.
- Les points B, A, E sont alignés.
 - **1.** Prouver que ED = 4.5 m.

Dans le triangle *BDE* rectangle en *B*, d'après le théorème de Pythagore :



D

épaisseur de la dalle 20 cm

1 pt

$$ED > 0$$
 donc $ED = \sqrt{20,25} = 4,5 m$.

2. Calculer les dimensions *AC* et *AE* du limon (*valeurs arrondies au centimètre*).

On sait que (DC) et (EA) sont sécantes en B et que (ED) et (AC) sont parallèles, donc d'après le théorème de Thalès, on écrit :

$$\frac{BC}{BD} = \frac{BA}{BE} = \frac{CA}{DE}$$

Soit encore:

$$\frac{2,5}{2,7} = \frac{BA}{3,6} = \frac{CA}{4,5}$$

Ainsi:

$$\frac{2.5}{2.7} = \frac{CA}{4.5}$$
 alors $2.7 \times CA = 2.5 \times 4.5$ donc $CA = \frac{2.5 \times 4.5}{2.7} \simeq 4.17$ m

$$\begin{array}{l} \text{m} \ \frac{2,5}{2,7} = \frac{CA}{4,5} \ alors \ 2,7 \times CA = 2,5 \times 4,5 \ donc \ CA = \frac{2,5 \times 4,5}{2,7} \simeq \begin{array}{l} \text{4,17 m} \\ \text{m} \ \frac{2,5}{2,7} = \frac{BA}{3,6} \ alors \ 2,6 \times 3,6 = 2,7 \times BA \ donc \ BA = \frac{2,5 \times 3,6}{2,7} \simeq 3,33 \ m \end{array}$$

De plus $A \in [EB]$, donc

1 pt

$$EA = EB - AB \simeq 3,60 - \frac{2,5 \times 3,6}{2,7} \simeq 0,27 \ m.$$

EXERCICE 6 (4 points)

On a utilisé un tableur pour calculer les images de différentes valeurs de x par une fonction f et par une autre fonction g. Voici une copie de l'écran:

	D2 ▼ f _x = -5*D1+7			- 5*D1+7							
		Α	В	С	D	E	F	G	Н		
	1	x	-3	-2	-1	0	1	2	3		
	2	f(x)	22	17	12	7	2	-3	-8		
	3	g(x)	13	8	5	4	5	8	13		
	4										

1. Quelle est l'image de -3 par la fonction f?

D'après le tableau de valeurs, f(-3) = 22, donc -3 a pour image 22 par f.

2. Donner l'expression de f(x).

La cellule D2 est sélectionnée et la formule indiquée par le tableur est : $f_{\infty} = -5^*D1+7$ ainsi, D2 = -5*D1+7.

La cellule D2 contient l'image du contenu de la cellule D1 par f, on a : $f:D1 \mapsto -5*D1+7$ ou encore $f(D1)=-5\times D1+7$. On en déduit alors f(x) = -5x + 7.

3. Calculer f(7).

On a $f(7) = -5 \times 7 + 7 = -35 + 7 = -28$. Donc f(7) = -28.

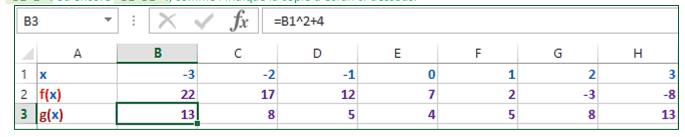
On sait que $g(x) = x^2 + 4$.

Quelle formule a-t-on saisie dans la cellule B3 et recopiée vers la droite pour compléter la plage de cellules C3:H3? On a $g(x) = x^2 + 4$.

La cellule B3 contient l'image du contenu de la cellule B1 par g, alors : $B3 = g(B1) = B1^2 + 4$

Ou encore $g: B1 \mapsto B3 = B1^2 + 4$. Ainsi, $B3 = B1^2 + 4$.

Donc, la formule saisie dans la cellule B3 est recopiée vers la droite pour compléter la plage de cellules C3:H3 est =B1^2+4 ou encore =B1*B1+4, comme l'indique la copie d'écran ci-dessous.



EXERCICE 7 (8 points)

Laurent s'installe comme éleveur de chèvres pour produire du lait qui servira à fabriquer des fromages.

Document 1

Chèvre de race alpine :

Production de lait : 1,8 *litre* de lait par jour et par chèvre en moyenne.

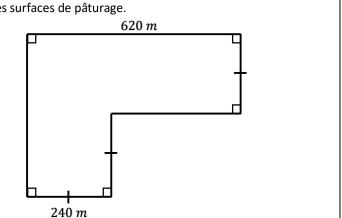
Pâturage: 12 *chèvres* maximum par hectare.

Document 3

 $1 \ hectare = 10 \ 000 \ m^2$

Document 2

Plan simplifié des surfaces de pâturage.



Document 4

Volume du cylindre : $V = \pi \times r^2 \times h$

1 Litre $\triangleq 1 dm^3$

PARTIE 1: La production de lait

1. Prouver que Laurent peut posséder au maximum 247 chèvres.

Calculons l'aire Ap de la surface de pâturage :

D'après le document 2, $A_P = 620 \times 240 + 240^2 = 206400 \ m^2$.

D'après le document 2, $1 hectare = 10 000m^2$

Et $\frac{206400}{10000} = 20,64$; donc, $A_P = 20,64$ hectares.

Déduisons alors le nombre de chèvres admissibles dans ce pâturage :

D'après le document 1, on ne peut placer plus de 12 *chèvres* par hectare.

Or, $12 \times 20,64 = 247,68$ donc Laurent ne peut posséder plus de 247 *chèvres*.

- 2. Dans ces conditions, combien de litres de lait peut-il espérer produire par jour en moyenne? Les 247 chèvres produisent en moyenne 1,8 L de lait par jour, or $247 \times 1,8 = 444,6$.
- Donc, Laurent peut espérer une production moyenne journalière de 444,6 L de lait.

PARTIE 2: Le stockage du lait

Laurent veut acheter une cuve cylindrique pour stocker le lait de ses chèvres.

Il a le choix entre deux modèles :

- cuve A: contenance 585 litres.
- cuve B: diamètre 100 cm; hauteur 76 cm.

Il choisit la cuve ayant la plus grande contenance ; laquelle va-t-il acheter ?

Comparons le volume des deux cuves :

Cuve A : $V_A = 585 L$

- Cuve B: $V_B = Aire\ du\ disque\ d'une base\ de\ la\ cuve\ imes\ hauteur\ de\ la\ cuve\ = \pi imes \left(\frac{100}{2}\right)^2 imes 76 = 190\ 000\pi \simeq 596\ 902\ cm^3$ 1,5 pt
- 0,5 pt Donc, $V_B \simeq 596,902 \ dm^3 \triangleq 596,902 \ L$.
- Ainsi, $V_B > V_A$, donc Laurent achètera la cuve B. 0,5 pt